
presents:

Slony-I System Over view
Paris, Febr uary 2005

Speaker :

Jan Wieck
Software Engineer

Afilias USA Inc.
PostgreSQL Steering Committee

Ag enda

• The node networ k - building a Slony-I cluster
What is a node
A simple node networ k
Listening for events
Event flow

• Subscr ibing to sets
Creating the initial copy of the database
Cascaded subscriptions

• Replicating data
Splitting the update stream into chunks

• Advanced features
Provider change
Switchover
Failover

• Slony-I and Pgpool
Doing 6 hours downtime in 30 seconds

• Database schema changes

• About an integrated replication system

• The future of Slony-I

A simple node network

Tables sl_node and sl_path

A node is a combination of a database and
one slon process that considers it the "local
database"

In a simple configuration, all nodes have a
"path" to each other. So the table sl_path
will have an entr y telling every slon how to
connect to every other nodes database.
These connections are only established
when needed.

Node 1

DB1
slon

Node 2

DB2
slon

Node 3

DB3
slon

Node 4

DB4
slon

Listening for events

While replicating data is the final goal, it is
not the first thing to get wor king. To
understand the advanced features of the
Slony-I replication system it is important not
to associate any par ticular node with a fixed
"master" or "slave" role.

Table sl_listen

The entries in sl_listen control the logical
flow of events.

sl_or igin sl_receiver sl_provider
1 2 1
1 3 2
1 4 3
2 1 2
2 3 2
2 4 3
3 1 2
3 2 3
3 4 3
4 1 2
4 2 3
4 3 4

Node 1

DB1
slon

Node 2

DB2
slon

Node 3

DB3
slon

Node 4

DB4
slon

Event flow

Tables sl_event and sl_confirm

• Event happens on Node 3
• Nodes 2 and 4 get notification, read the

ev ent, process and confirm it within one
transaction on the local database

• Node 1 gets notification, reads event on 2,
processes and confirms.

• When the event processing transactions on
nodes 1, 2 and 4 commit, the remote listen
threads get notified and propagate the
confir mation.

• Periodically the cleanup thread checks for
ev ents that are confirmed by all other known
nodes and removes them (including the
replication data that belongs to them).

Node 1

DB1
slon

Node 2

DB2
slon

Node 3

DB3
slon

Node 4

slon
DB4

Event

Confir m

Event

Confir m

EventConfir m

Sets and subscribing

Database objects (tables and sequences) are
organized in sets. To star t replicating data,
Slony-I needs to copy an initial snapshot of the
set from the provider node to the subscriber.

The following assumes that Node 2 is the origin
of a set.

• The SUBSCRIBE_SET event is generated
on Node 3. As usual the event propagates
to all nodes.

• When receiving the event, Node 2
generates the ENABLE_SUBSCRIPTION
ev ent in return.

• When Node 3 processes the enable event, it
copies over the sl_table and sl_sequence
entr ies for the set, disables triggers and
rules defined for the tables, adds a
protective trigger that denies user
application updates, copies over each of the
tables data and remembers the exact
transaction status of the point when the set
got copied.

That the activation of the subscription starts from
the origin is important. All other forwarding
subscr ibers must know about it.

Node 1

DB1
slon

Node 2

DB2
slon

Node 3

DB3
slon

Node 4

slon
DB4

Subscr ibe

Enable subsciption

Cascaded subscription

To keep the initial set copy IO off the origin,
which is usually the main DB server, every
other subscriber can be instructed to copy
the data from an existing subscriber, acting
as data provider for the new node. This
requires that the provider has a forwarding
subscr iption that is active.

Node 1

DB1
slon

Node 2

DB2
slon

Node 3

DB3
slon

Node 4

slon
DB4

Subscr ibe

Enable subsciption

Subscr ibeEnable subsciption

Subscr ibe

Enable subscription

Replicating data

A SYNC event is basically like every other event. The originating node records the
transaction state infor mation of the serializable transaction that creates the event and the
ev ent is propagated through the node networ k.

After subscribing to a set and finishing the first SYNC event (the first one is a little
different because the COPY happened somewhere in between two SYNC events), the
subscr ibed sets on the replica are always replicated up to a specific SYNC event of the
set origin.

When a SYNC event arrives at a node that has set(s) subscribed that origin on the same
node as the SYNC originated, it will select the delta between the current local set status,
and the new events transaction infor mation. This data is transfor med into INSERT,
UPDATE and DELETE statements that get executed against the local database. In
addition, if the set is subscribed in forwarding mode, the selected log data is stored
locally as well, so that cascaded subscribers can select it from this node as soon as they
receive the event.

Replicating in small units

A ser ializable snapshot

The MVCC infor mation for a ser ializable
transaction snapshot tells which
transactions logically precede or follow the
current transaction. Using this infor mation it
is possible to define logical cuts into the
continuous stream of overlapping
transactions.

In the example on the right, the SYNC event
generated in transaction 8 would remember
(from the SerializableSnapshotData) that
transactions 5 and 7 where still in progress
when transaction 8 began.

Xid 4

Xid 5

Xid 6

Xid 7

Xid 8
SYNC

Xid 9

Replicating in small units

One Chunk of replication data

Tr ansactions that have not been committed
when one SYNC event is created belong to
the following SYNC event, even if their
numer ic transaction ID is smaller than the
one of the SYNC event itself.ID is smaller
than the one of the SYNC event itself.

Xid 4

Xid 5

Xid 6

Xid 7

Xid 9

Xid 8
SYNC

Xid 10

Xid 11

Xid 12

Xid 13

Xid 15

Xid 14
SYNC

Provider chang e

Because in Slony-I the logical segmentation
of the replication infor mation is done on the
or igin by creating the SYNC events (every
subscr iber always replicates up to the
transaction status of one SYNC and
commits the changes to the local DB), and
because all nodes that do log forwarding
keep those log rows until the corresponding
SYNC events have been confirmed by every
subscr ibed node, it is easy to change the
data provider.

Assuming Node 1 is subscribed and
currently selecting the log data from Node 3,
a "subscr ibe set" command will simply
update the data provider infor mation in the
sl_subscr ibe configuration table. Without the
need to rebuild the data from scratch, Node
1 becomes a replica that reads the log
infor mation directly from the origin Node 2.

Node 1

DB1
slon

Node 2

DB2
slon

Node 3

DB3
slon

Node 4

slon
DB4

log data

log data

log data

log data

Switchover

Slony-I has a feature for controlled transfer
of the origin of a set. The procedure to do
so is to lock the set logically. This causes all
updates to the tables contained in the set to
be denied on the current origin. Then a
MOVE_SET event is issued which transfers
the origin. The stored procedure that
generates the MOVE_SET event also
generates a SYNC event before, and since
all events are processed by the other nodes
in order it is guaranteed that at the moment
the nodes consider the new node as origin,
they are all replicated to that status.

On the old origin (Node 2), the MOVE_SET
ev ent causes that it becomes a subscriber.
Which means that is it at the ver y moment
the new origin (Node 3) takes over and
allows for updates by the client application,
it is a fully synchronized replica.

In the sample configuration on the right a
maintenance shutdown of the main DB
ser ver would be possible after stopping the
application, doing the "lock set", "move set",
"subscr ibe" (instr ucting Node 1 to replicate
against Node 3) commands, and then
restar ting the application now issuing
updates against Node 3. This entire
reconfiguration can be done within seconds.

Node 1

DB1
slon

Node 2

DB2
slon

Node 3

DB3
slon

Node 4

slon
DB4

log data

log data

log data

log data

log data

Failover

The failover is a combination of provider
changes and a synthetic MOVE_SET.

Assuming that Node 3 is the designated
backup server for Node 2, the situation
would be ver y simple if Node 3 at the time
Node 2 fails is the most advanced
subscr iber (no other node has replicated
more data than Node 3).

If that is not the case, the failover procedure
is to stop all nodes receiving events from
Node 2, determine which is the most
advanced replica, change the designated
backup server to use that as provider. The a
synthetic MOVE_SET event, injected at the
most advanced replica will cause the data to
become available for update on the backup
ser ver as soon as it has caught up to the
last known status of the failed server.

Node 1

DB1
slon

Node 2

DB2
slon

Node 3

DB3
slon

Node 4

slon
DB4

log data log data

1) log data & MOVE_SET

2) log data

log data

Slony-I and pgpool

In addition to the administrative advantages
of Pgpool alone, the combination of Pgpool
together with the Slony-I replication system
offers unprecedented database availability
for PostgreSQL.

Database servers need frequent
maintenance. For this, it is sometimes
required to shut down the database system
or even the entire server. In 24x7
installations this is known as "scheduled
downtime".

Application

Pgpool
read/wr ite

Search engine

Pgpool
readonly

Node 1

DB1
slon

Node 2

DB2
slonReplication

Doing 6 hours of downtime in 30 seconds

To shutdown Node 1 for a scheduled
maintenance shutdown, the Pgpool
configuration is changed and the Slony-I
system perfor ms a switchover.

After the switchover, Node 1 is a fully
synchronized subscriber. That means, it can
safely be shut down and/or the maintenance
tasks perfor med offline. When the Slony-I
replication engine is restarted later, it will
catch up. The Pgpool configuration changes
get reverted and the data origing transferred
back to Node 1 and everything is back as it
was.

Application

Pgpool
read/wr ite

Search engine

Pgpool
readonly

Node 1

DB1
slon

Node 2

DB2
slonSwitchover

DB Schema chang es and why automatic DDL replication is bad

Database schema changes like for example adding tables or adding columns to existing
tables, require in a Slony-I replicated environment that the same operations are
perfor med on the original and all replicas at the same logical point in time, from a
transactional point of view. Otherwise the replication log data could contain data for a
column that does not yet exist in the replica, or a later perfor med setting of a new column
to default values on the replica could overwr ite already replicated infor mation.

To avoid these conflicts and allow schema modifications to be perfor med ev en in a
currently updated database, Slony-I suppor ts the execution of SQL scripts through the
replication event system. This guarantees that all nodes execute the script at the same
logical point in time within the transaction and event flow.

In the current version of Slony-I direct executed DDL on a replica could even lead to
ser ious corr uptions due to the way this version disables constraints, rules and user
defined triggers for the target tables.

Another aspect of replicating database Schema changes is the fact that sometimes it is
desirable to have different schemas on purpose. With the way PostgreSQL’s system
catalog wor ks, this would be ver y difficult if a replication system attempts to

About the demand for an integrated replication solution

Many users have asked for a replication solution that is integrated into the PostgreSQL
database backend. Many dev elopers have claimed that it is difficult if not impossible to
keep a replication system up to date with the rapid progress made by the PostgreSQL
main project.

Slony-I was designed originally to wor k with PostgreSQL versions 7.3 and 7.4. Version
1.0.0 of Slony-I was released in July 2004. Only 3 days after the announcement of the
BETA cycle for PostgreSQL 8.0, the Slony-I team presented version 1.0.2 that is capable
of replicating between 7.3, 7.4 and 8.0-BETA versions.

The future of Slony-I

• Backup and incremental backup

A Slony-I utility will create database dumps and a replica
will write SQL scripts that contain all queries the replication
engine needs to perfor m since that dump.

• Sync pipelining

The Slony-I engine will be allowed to open more than one
cursor to increase the speed of the catch up.

• Slony-I and Pgpool even better

• Complete handover to Open Source Community

